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Abstract
Sieber and Richter achieved a breakthrough towards a proof of the universality
of spectral fluctuations of chaotic quantum systems conjectured by Bohigas,
Giannoni and Schmidt by calculating semiclassically the first term beyond
the diagonal approximation of the orthogonal form factor. In this letter, the
semiclassical origin of the logarithmic singularity of the symplectic form factor
is deduced perturbatively by combining this result with the contribution that
arises due to the spin. This approach stands in contrast to the duality approach
introduced by Bogomolny and Keating, which is essentially non-perturbative,
and where the structure around the Heisenberg time is related to the structure
for very small time which can be deduced using the diagonal approximation.

PACS numbers: 05.45.Mt, 03.65.Sq, 02.10.Yn

1. Introduction

Numerically, it was shown for many chaotic quantum systems that the form factor is faithful
to random-matrix theory [1, 2]. However, a derivation of the equivalence of the spectral
properties of random-matrix theory with the properties of classically chaotic quantum systems
(the so-called BGS conjecture, [3]) is still missing.

Recently, Sieber and Richter [4] have been able to make a breakthrough towards a
semiclassical derivation of the BGS conjecture by calculating the first off-diagonal term of
the semiclassical form factor for the orthogonal case. Using these results, we are able to
proceed further by comparing the orthogonal with the symplectic symmetry class. In contrast
to the bootstrap method which was introduced by Bogomolny and Keating [5] and applied to
the symplectic case by Keppeler [6], we propose a generalization of the perturbative expansion
introduced by Sieber and Richter.

This letter is organized as follows. First, we will derive the first off-diagonal term
of the symplectic form-factor using the semiclassical spin formalism derived by Bolte and
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Figure 1. The spin contribution for orbits in configuration space with relative intersection number
k = 0, 1 and 2, corresponding to equation (7), (10), (11) and (16), respectively. The matrices in the
trace are SU(2)-matrices describing the semiclassical spin transport along the classical periodic
orbits γ , γ ′, which are determined by the classical Hamiltonian of the corresponding spinless
particle.

Keppeler [7]. Then, we proceed as follows: we also assume that the higher-order terms in the
form factor can be calculated by a semiclassical expansion in terms of number of intersections,
where one of the partner orbits has an intersection, the other has an avoided crossing. Already
in the case of two intersection points, many different topologies are possible. However, we
assume that only the topology depicted in figure 1(c) is relevant. Using this assumption and its
generalization for higher-order contributions, we calculate the spin contribution in all orders
of the semiclassical expansion for arbitrary spin j . This will lead to the final conclusion that
the semiclassical expansion for the orthogonal and symplectic case are basically the same in
the region below the Heisenberg time; the only differences are a scaling due to Kramers’
degeneracy and a certain phase factor due to the spin. The main conclusion is that the
logarithmic singularity at the Heisenberg time in the symplectic case originates from this
additional phase factor.

The orthogonal form factor derived from random-matrix theory is given by [1]

K[τ ]orth =



2|τ | − |τ | ln[1 + 2|τ |] for |τ | < 1

2 − |τ | ln
2|τ | + 1

2|τ | − 1
for |τ | > 1

and has the small τ -expansion K[τ ] = 2τ − 2τ 2 + 2τ 3 · · · .
Let Aγ ≡ Tγ /

√
Tr Mγ − 2 be the amplitude of the classical periodic orbit γ with period

Tγ and corresponding action S(γ ). In the semiclassical framework initiated by Gutzwiller [8],
the form factor is then given by the following double sum over periodic orbits γ, γ ′:

K[τ ]orth = lim
h̄→0

1

2πh̄d̄(E)

∑
γ,γ ′

AγA
∗
γ ′ expi(Sγ−Sγ ′ )/h̄ δ

(
T − Tγ + Tγ ′

2

)
. (1)

Here, d̄(E) denotes the mean density of states. Basically, the BGS conjecture states that
the random-matrix theory result for the form factor can be deduced from this expression
in the semiclassical limit. The semiclassical limit is defined by h̄ → 0, or equivalently,
Tγ → ∞, TH → ∞, Tγ /TH ≡ τ . The leading term 2τ of the random-matrix form factor can
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be deduced semiclassically by taking into account the contribution of the self-correlation of all
orbits. This is the so-called diagonal approximation, first derived by Berry in 1985 [9]. Sieber
and Richter demonstrated that the term −2τ 2 in the Taylor expansion of the random-matrix
theory result can be derived semiclassically by considering a pair of orbits γ, γ ′ where the
relative intersection number is one: the additional intersection in the first orbit defines two
parts of this orbit. As compared to the orbit without additional intersection, the direction in one
part of the first orbit is reversed (figure 1(b)). The action difference of the two orbits must be of
the order of h̄ in order to give a non-vanishing contribution to the form factor. Therefore, both
orbits must have almost the same action; for h̄ → 0, the action difference must vanish. Only
at the place where the additional intersection happens, both orbits deviate from each other.
These configurations do only contribute to the form factor when time-reversal symmetry is
preserved, because only in this case, the time-reversed orbit exists and is given by the orginal
orbit transversed in the opposite direction.

For the symplectic case, off-diagonal terms arise much the same as for the orthogonal case,
because time-reversal symmetry still holds. The only difference to the orthogonal form factor
is the fact that the squared time-reversal operator is negative (T 2 = −1) in the symplectic
case. This, in turn, is realized for systems with half-integer spin. The symplectic form factor
derived from random-matrix theory reads [1]

K[τ ]sympl =



|τ |
2

− |τ |
4

ln |1 − |τ || for |τ | < 2

1 for |τ | > 2.

Thus, the term +τ 2/4 is expected to arise from the same orbit correlation that has been
considered by Sieber and Richter. The prefactor 1/4 can be determined trivially due to
Kramers’ degeneracy. In the orthogonal case, energy eigenstates |En〉, |T En〉 are proportional
to each other and do not lead to different quantum states. However, energy eigenstates
|En〉, |T En〉 are different quantum states with the same energy due to 〈En|T En〉 = 0 if
T 2 = −1. Consider the Fourier transform of the form factor y[e], which is a function of
energy. We can double the energy scale y[2e]. In such as way, we introduce Kramers’
degeneracy by hand in the orthogonal case

1
2Korth(

1
2τ) =

∫ ∞

−∞
yorth(2e)e

2π ieτ de. (2)

After this scaling, the symplectic and orthogonal form factor can be compared using the
same variables. The second difference between the orthogonal and the symplectic case is the
contribution arising due to half-integer spin. In the symplectic case, the semiclassical first-
order (k = 1) off-diagonal contribution corresponding to correlations between orbits where
one of the partners has an avoided crossing where the other has a self-intersection with small
intersection angle reads therefore

Kk=1
sympl(τ ) = (spin contribution) ∗ 1

2

(
−2

(τ
2

)2
)
. (3)

The only non-trivial change for the symplectic case as compared to the orthogonal case is
the sign factor, which is, as we intend to show, due to the spin contribution in the semiclassical
form factor. It was demonstrated that the spin contribution is +1 for the diagonal part of
the form factor, that is, when both orbits γ are equal [10]. However, the first off-diagonal
contribution is due to the correlation between two orbits with relative intersection number one.
This will lead to a sign change for the spin contribution.
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2. Spin contribution for the diagonal approximation

The form factor for the symplectic case is given by [10]

K[τ ]sympl = lim
h̄→0

〈
1

2πh̄d̄(E)

∑
γ,γ ′

(
Tr dγ Tr dγ ′

)
AγA

∗
γ ′ expi(Sγ−Sγ ′ )/h̄ δ

(
T − Tγ + Tγ ′

2

)〉
.

(4)

Comparing with the formulation for a system without spin, an additional factor Tr dγ for each
orbit arises due to the spin. In the formalism derived by Bolte and Keppeler, the classical
trajectory is determined by the classical Hamiltonian of the corresponding system for the
spinless particle. The degree of freedom of the spin is introduced in terms of the SU(2)-matrix
dγ that is transported along this classical trajectory. Let (p, x) be the starting point of a classical
trajectory in phase space. Then, �t

H(p, x) describes the classical trajectory along a path γ ,
and M is a Hermitian and traceless matrix on the energy shell �E in phase space describing
the spin interaction. The spin is transported along the classical trajectory obeying the equation

ḋ(p, x, t) + i M(�t
H(p, x))d(p, x, t) = 0 (5)

where the time derivative is understood to be along the trajectory �t
H(p, x). In [11], quantum

ergodicity of the spin system has been proven under the assumption that the classical spin
motion is ergodic. Basically, this relation between classical and quantum ergodicity of the
spin is due to the Hopf map πH : SU(2) → SO(3) relating the classical spin motion with the
quantum spin motion. In case that the classical motion of the spin is chaotic, dγ becomes an
arbitrary SU(2)matrix in the semiclassical limit t → ∞. In this case, 〈Tr dγ Tr dγ ′ 〉 = 1 can
be concluded for the diagonal contribution, that is, for γ = γ ′.

First, we recall the derivation of the spin contribution for the diagonal part, and then we
shall show how a difference in the intersection number alters the result. The object that has to
be calculated in the diagonal part of the form factor is the integral of (Tr dγ )2 for large time t
over the phase space consisting of the energy shell �E and the spin group, that is, the product
space M = �E × SU(2). In the semiclassical limit, we obtain

〈(Tr dγ )
2〉 = lim

Tγ→∞
1

Tγ

∫ Tγ

0
[Tr d(�t

H(p, x), t)]
2 dt. (6)

Using the ergodicity theorem, the integral can be replaced by an integral over the phase
space for the degree of freedom of the spin, which can be expressed as an integral over the full
group SU(2). Let dµH(g) be the Haar measure of SU(2) in the variables defined by the group
element g. An explicit expression for the Haar measure is given in the appendix. Changing
‘coordinates’ from g to gh does not affect the integration measure, that is, the Haar measure
is right invariant, dµH(gh) = dµH(g). For Tγ → ∞, we can replace d(�t

H(p, x)) by an
arbitrary SU(2)-matrix g if the spin motion is chaotic. The result is [10]

〈(Tr dγ )
2〉 =

∫
SU(2)

[Tr h]2 dµH(h) = +1. (7)

Obviously, the spin contribution is irrelevant for the diagonal part of the two-point function
and the form factor.

A priori, it is not possible to calculate the spin contribution for the off-diagonal part of
the form factor. However, using the result of Sieber and Richter, we know that the τ 2-term is
originating from correlations between periodic orbits with relative intersection number k = 1.
We conjecture that the τ k+1-term in the Taylor expansion corresponds to orbits with relative
intersection number k, and that among all possible topologies of the self-intersections on
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the orbit, only those depicted in figure 1(c) for k = 2, and its generalization to arbitrary k are
relevant (however, at each intersection, the role of the orbits can be interchanged independently:
either γ or γ ′ has the intersection). Then, the spin contribution can be calculated for all higher-
order terms in the τ -expansion. In order to do so, we must cut one of the orbits open and reverse
the direction k times, as displayed for k = 1, 2 in figure 1. Due to unitarity, the spin transport
matrix d(�H

t+t ′(p, x), t) for the transport from (x, p) to �H
t+t ′(p, x) is given by the matrix

product of the spin transport matrix from (p, x) to �H
t ′(p, x) and the spin transport matrix

from �H
t ′(p, x) to �H

t+t ′(p, x)

d(p, x, t + t ′) = d(�H
t ′(p, x), t)d(p, x, t ′). (8)

This can also be verified directly by the transport equation (5). Therefore, it is possible to cut
the orbit in configuration space at an arbitrary point (time t ′) into two pieces dγ = d1∗d2 = dγ ′ .
First, we want to demonstrate that the spin contribution equation (7) is not modified when the
classical path xcl(t) is cut into two pieces without inverting the direction. Writing Tγ = T1 +T2,
the spin contribution 〈(Tr dγ )2〉 can also be expressed as (T2 ≡ Tγ − T1)

〈(Tr dγ )
2〉 = lim

T1→∞
lim
T2→∞

1

T1T2

∫ T1

0
dt ′

∫ Tγ

T1

dt[Tr d(�t ′
H(p, x), t)d(p, x, t

′)]2. (9)

Note that ergodicity of the spin motion in each part of the orbit can only be expected if the
length of each part of the orbit becomes infinitely large. By applying twice the ergodicity
theorem, a double integral over the phase space of the spin is obtained:

〈(Tr dγ )
2〉 =

∫
SU(2)

∫
SU(2)

[Tr hg]2 dµH(h) dµH(g) =
∫
SU(2)

[Tr hg]2 dµH(hg) = +1. (10)

Using the right-invariance of the Haar measure, of course, the same result is obtained.
That is, cutting the two orbits without reversing the direction of one of the two orbits does not
alter the result, as it should be. Using the symbol Sγ for a part of the two orbits having the
same direction and Oγ for a part with opposite direction, the conclusion is S1S2 = S1+2 and
O1O2 = O1+2. In the next section, we consider the case of an orbit with one intersection, that
is, an orbit with the structure S1O2.

3. One-intersection case

For the first off-diagonal contribution, the direction of one part of one orbit must be reversed,
that is, cutting the first orbit into two parts, dγ = d1 ∗ d2, the other orbit is given by
dγ ′ = d1 ∗ d−1

2 . In the calculation of the form factor, all possible combinations of orbits have
to be taken into account. Concerning the degree of freedom of the spin, consider two different
orbits with the degree of freedom of the spin transported along both of them, respectively.
We want to determine the number of different possibilities of relative spin position when both
orbits are cut open at one point. The direction of the spin of the first orbit defines an axis. The
spin direction of the spin propagating along the other orbit can have 2j +1 different possibilities
with respect to this axis. Due to ergodicity, all these directions have the same probability. In
the case j = 1/2 and one intersection (corresponding to cutting the orbits once), 2 different
states contribute to the summation over orbit pairs. We do not write explicitly the arguments
of d1(�

t ′
H(p, x), t) and d2(p, x, t

′) in the integral, because the only information needed for the
calculation is the fact that for very large time, these matrices become arbitrary SU(2)-matrices,
and the time integral is replaced by an integral over phase space due to the ergodicity theorem.
The parametrization and explicit calculation can be found in the appendix:

〈Tr dγ Tr dγ ′ 〉1 intersection = lim
T1→∞

lim
T2→∞

2

T1T2

∫ T1

0
dt ′

∫ Tγ

T1

dt Tr [d1d2] Tr [d1d
−1
2 ]
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= 2
∫
SU(2)

∫
SU(2)

Tr[h̃h] Tr[h̃h−1] dµH(h) dµH(h̃) = −1. (11)

Thus, we have calculated the spin contribution for the first off-diagonal term for the symplectic
case. Combining with the results of Sieber and Richter and taking into account Kramers’
degeneracy, the conclusion is

K(τ)off
sympl = 1

2

[
−2

(τ
2

)2
]

〈Tr dγ Tr dγ ′ 〉1 intersection = +
τ 2

4
(12)

as presumed.

4. Multiple-intersection case

By comparing the orthogonal and the symplectic form factor, it is possible to check whether
the higher-order terms in the τ -expansion are related to correlations of orbits with relative
intersection number k: assume that semiclassically, the orthogonal form factorK(τ) has been
evaluated, that is, the expansion in τ has been deduced by calculating the correlation between
orbits with increasing intersection number. Then, 1/2 K(τ/2) corresponds to the symplectic
form factor without taking into account the spin contribution. Indeed, comparing the power
expansion for 0 � τ � 1 of Ksympl(τ ) with 1

2 Korth(
τ
2 ), the result is

Ksympl(τ ) = τ

2
+
τ 2

4
+
τ 3

8
+
τ 4

12
+
τ 5

16
+ · · · (13)

1

2
Korth

(τ
2

)
= τ

2
− τ 2

4
+
τ 3

8
− τ 4

12
+
τ 5

16
− · · · . (14)

The conclusion for the spin contribution for all off-diagonal terms is

〈Tr dγ Tr dγ ′ 〉k intersections = (−1)k. (15)

This equation should be interpreted as follows: taking the orbits γ, γ ′ corresponding to
the τ k+1-term of the expansion, the spin contribution must be (−1)k for half-integer spin and
+1 for integer spin. A priori, it is not possible to calculate the spin contribution without further
assumptions about the contributing orbit pairs γ, γ ′. It is natural to test whether the assumption
that all terms in the expansion can be calculated by considering pairs of orbits with increasing
intersection number leads to the random-matrix theory result.

The spin contribution for k = 0 has been calculated in [10]. The contribution for spin
j = 1/2 and orbits with relative intersection number k = 1 has been calculated in the previous
section. Next, we consider the case where the relative intersection number is k = 2 and
j = 1/2. We assume that for every new intersection, a combination same direction–opposite
direction SαOβ must be added to the existing orbit (figure 1). Summation over all possible spin
contributions for the orbits leads to (2j + 1)k = 2k terms, which all give the same contribution
in the semiclassical limit Tγ → ∞.

〈Tr dγ Tr dγ ′ 〉2 intersections

= 22
∫
SU(2)

∫
SU(2)

∫
SU(2)

∫
SU(2)

Tr[h1h2h3h4] Tr[h1h
−1
4 h3h

−1
2 ]

dµH(h1) dµH(h2) dµH(h3) dµH(h4) = +1. (16)

The assumption that the τ 3-term in the expansion of the form factor both in the orthogonal
and symplectic case is due to correlations between orbits where the relative intersection number
is two is therefore consistent with the random-matrix theory result.
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Next, we give the general expression for the spin contribution in the form factor when the
relative intersection number is k, and the spin j = n/2, n integer. The matrices h in the spin
j -representation are (2j + 1)× (2j + 1) dimensional general SU(2) matrices. The prefactor
(2j + 1)k is due to the fact that each time when the orbit is cut open, with respect to the axis
given by the first spin, the second spin can have 2j +1 different states, which all contribute with
the same weight, leading to (2j + 1)k contributing orbit pairs for in the spin j representation:

〈Tr dγ Tr dγ ′ 〉k intersections

= (2j + 1)k
2k∏
j=1

∫
SU(2)j

dµH(hj ) Tr

[ 2k∏
l=1

hl

]
Tr

[ k−1∏
t=0

h2t+1h
−1
2(k−t)

]

=
{
(−1)k j half-integer

(+1) j integer
(17)

as presumed.
Finally, we compare K[τ ]sympl with 1/2K[τ/2]orth below twice the Heisenberg time and

find

1

2
K

[τ
2

]
orth

= |τ |
2

− |τ |
4

ln[1 + |τ |] |τ | < 2 (18)

K[τ ]sympl = |τ |
2

− |τ |
4

ln[|1 − |τ ||] |τ | < 2. (19)

Obviously, the sign factor which has been demonstrated to be related to the spin contribution is
responsible for the singularity at the Heisenberg time τ = 1 in the symplectic case. However,
note that the semiclassical perturbative expansion is only valid for 0 � τ � 1.

To summarize, we have demonstrated that the semiclassical expansion for the off-diagonal
part of the form factor in terms of correlations between the orbits γ, γ ′, with relative intersection
number k as predicted by Sieber and Richter reproduces correctly the singularity at the
Heisenberg time arising in the symplectic case. This is a strong hint for the assumption that
all higher order terms of the τ -expansion of the form factor can be calculated semiclassically
by considering orbit pairs with relative intersection number k. However, the calculation of the
τ -expansion itself remains a challenging problem to be solved.

Support by the Sonderforschungsbereich ‘Unordnung und große Fluktuationen’ of the
Deutsche Forschungsgemeinschaft is gratefully acknowledged. I enjoyed useful discussions
with J Bolte, P Braun, S Keppeler, C Manderfeld, H Schomerus, M Sieber and F Haake.

Appendix

In this appendix we give the parametrization and the most important steps for the evaluation
of the integrals over the group SU(2). For a general SU(2)-matrix, the spin j = 1/2
representation can be expressed as (q ≡ exp(iη), r ≡ exp(iξ))

h(q, r, θ) =
(
q cos(θ) −r sin(θ)
r−1 sin(θ) q−1 cos(θ)

)
.

In the spin j -representation, h can be represented as (2j + 1)× (2j + 1)Wigner-d-matrix.
The Haar measure in terms of the variables (θ, ξ, η) reads∫

SU(2)
dµH(h) =

∫ π/2

0

∫ 2π

0

∫ 2π

0

1

4π2
sin(2θ) dθ dξ dη.
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Now, consider an integral for the k-intersection spin 1/2-case of the form

〈Tr dγ Tr dγ ′ 〉k intersections = 2k
2k∏
j=1

∫
SU(2)j

dµH(hj )Tr

[ 2k∏
t=1

ht

]
Tr

[ k−1∏
t=0

h2t+1h
−1
2(k−t)

]

= 2k
2k∏
j=1

∫
SU(2)j

dµH(hj )f (qj , rj , θj ).

Expressed in terms of (qj , rj ), the function f (qj , rj , θj ) is a series
∑

nj ,mj
A[nj ,mj , θ ]∏2k

j=1 q
nj
j r

mj
j . The 4k integrals over (η, ξ) extract the term A[0, 0, θ ] ≡ g(θ) of f (qj , rj , θj ).

The remaining 2k integrals are then given by

〈Tr dγ Tr dγ ′ 〉k intersections = 2k
2k∏
j=1

∫ 1

−1
d cos(2θj )

(
1

8π2

)2k

(2π)4kg(sin2(θj ), cos2(θj ))

= 2k
2k∏
j=1

∫ 1

−1
dxj

(
1

8π2

)2k

(2π)4kg

(
(1 − xj )

2
,
(1 + xj )

2

)

= (−1)k
2k∏
j=1

∫ 1

−1
dxj (1 − xj )

1

(8π2)2k
(2π)4k = (−1)k.

The functions f (qj , rj , θj ) and g(θj ) have been determined with the help of Mathematica.
For the general case of the spin j -representation, similar calculations lead to the result

2k∏
j=1

∫
SU(2)j

dµH(hj )Tr

[ 2k∏
t=1

ht

]
Tr

[ k−1∏
t=0

h2t+1h
−1
2(k−t)

]
= (−1)k

1

(2j + 1)k

for half-integer spin, and

2k∏
j=1

∫
SU(2)j

dµH(hj )Tr

[ 2k∏
t=1

ht

]
Tr

[ k−1∏
t=0

h2t+1h
−1
2(k−t)

]
= 1

(2j + 1)k

for integer spin.
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